Machine learning models development for shear strength prediction of reinforced concrete beam: a comparative study … – Nature.com

npressfetimg-1204.png
  • Siddika, A., Al Mamun, M. A., Alyousef, R. & Amran, Y. H. M. Strengthening of reinforced concrete beams by using fiber-reinforced polymer composites: A review. J. Build. Eng. 25, 100798 (2019).

    Google Scholar 

  • Li, W. et al. Carbon fiber-reinforced polymer mesh fabric as shear reinforcement in reinforced concrete beams. J. Build. Eng. 53, 104433 (2022).

    Google Scholar 

  • Shehata, E., Morphy, R. & Rizkalla, S. Fibre reinforced polymer shear reinforcement for concrete members: Behaviour and design guidelines. Can. J. Civ. Eng. 27, 859–872 (2000).

    Google Scholar 

  • El-Gamal, S. E., Al-Nuaimi, A., Al-Saidy, A. & Al-Lawati, A. Efficiency of near surface mounted technique using fiber reinforced polymers for the flexural strengthening of RC beams. Constr. Build. Mater. https://doi.org/10.1016/j.conbuildmat.2016.04.152 (2016).

    Article 

    Google Scholar 

  • Xie, J. & Hu, R. Experimental study on rehabilitation of corrosion-damaged reinforced concrete beams with carbon fiber reinforced polymer. Constr. Build. Mater. 38, 708–716 (2013).

    CAS 

    Google Scholar 

  • Nanni, A. Guide for the design and construction of concrete reinforced with FRP bars (ACI 440.1 R-03). In Structures Congress 2005: Metropolis and Beyond 1–6 (2005).

  • Campana, S., Fernández Ruiz, M., Anastasi, A. & Muttoni, A. Analysis of shear-transfer actions on one-way RC members based on measured cracking pattern and failure kinematics. Mag. Concr. Res. 65, 386–404 (2013).

    Google Scholar 

  • Sharafati, A. et al. Development of advanced computer aid model for shear strength of concrete slender beam prediction. Appl. Sci. https://doi.org/10.3390/app10113811 (2020).

    Article 

    Google Scholar 

  • Burgoyne, C. J. et al. FRP reinforcement in RC structures. (2007).

  • Razaqpur, A. G., Isgor, B. O., Greenaway, S. & Selley, A. Concrete contribution to the shear resistance of fiber reinforced polymer reinforced concrete members. J. Compos. Constr. 8, 452–460 (2004).

    Google Scholar 

  • Torsion, A.-A. C. 445 on S. and. Recent approaches to shear design of structural concrete. J. Struct. Eng. 124, 1375–1417 (1998).

  • Fico, R., Prota, A. & Manfredi, G. Assessment of Eurocode-like design equations for the shear capacity of FRP RC members. Compos. Part B Eng. 39, 792–806 (2008).

    Google Scholar 

  • Tottori, S. & Wakui, H. Shear capacity of RC and PC beams using FRP reinforcement. Spec. Publ. 138, 615–632 (1993).

    Google Scholar 

  • Zeng, J.-J. et al. Compressive and transverse shear behaviour of novel FRP-UHPC hybrid bars. Compos. Struct. 281, 115001 (2022).

    CAS 

    Google Scholar 

  • Whitehead, P. A. & Ibell, T. J. Novel shear reinforcement for fiber-reinforced polymer-reinforced and prestressed concrete. ACI Struct. J. 102, 286 (2005).

    Google Scholar 

  • El-Sayed, A. K., El-Salakawy, E. & Benmokrane, B. Mechanical and structural characterization of new carbon FRP stirrups for concrete members. J. Compos. Constr. 11, 352–362 (2007).

    Google Scholar 

  • El-Sayed, A. K. & Soudki, K. Evaluation of shear design equations of concrete beams with FRP reinforcement. J. Compos. Constr. 15, 9–20 (2011).

    Google Scholar 

  • Alkhrdaji, T. et al. Guide for the design and construction of structural concrete reinforced with FRP bars (2006).

  • DT, C. Guide for the design and construction of concrete structures reinforced with fiber-reinforced polymer bars (2007).

  • Ahmed, E. A., El-Salakawy, E. F. & Benmokrane, B. Shear performance of RC bridge girders reinforced with carbon FRP stirrups. J. Bridg. Eng. 15, 44–54 (2010).

    Google Scholar 

  • Association C. S. Design and Construction of Building Components with Fibre-Reinforced Polymers (Canadian Standards Association, 2002).

    Google Scholar 

  • (JSCE), J. S. of C. E. Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials. Concrete Eng. Ser. 23, 325 (1997).

    Google Scholar 

  • Ehsani, M. R., Saadatmanesh, H. & Tao, S. Bond of hooked glass fiber reinforced plastic (GFRP) reinforcing bars to concrete. ACI Mater. J. 92, 391–400 (1995).

    Google Scholar 

  • Amani, J. & Moeini, R. Prediction of shear strength of reinforced concrete beams using adaptive neuro-fuzzy inference system and artificial neural network. Sci. Iran. 19, 242–248 (2012).

    Google Scholar 

  • Fiset, M., Bastien, J. & Mitchell, D. Shear strengthening of concrete members with unbonded transverse reinforcement. Eng. Struct. 180, 40–49 (2019).

    Google Scholar 

  • Kolozvari, K., Orakcal, K. & Wallace, J. W. New opensees models for simulating nonlinear flexural and coupled shear-flexural behavior of RC walls and columns. Comput. Struct. 196, 246–262 (2018).

    Google Scholar 

  • Al-Musawi, A. A. et al. Shear strength of SFRCB without stirrups simulation: Implementation of hybrid artificial intelligence model. Eng. Comput. 36, 1–11 (2020).

    Google Scholar 

  • Machial, R., Alam, M. S. & Rteil, A. Revisiting the shear design equations for concrete beams reinforced with FRP rebar and stirrup. Mater. Struct. 45, 1593–1612 (2012).

    Google Scholar 

  • Hoult, N. A., Sherwood, E. G., Bentz, E. C. & Collins, M. P. Does the use of FRP reinforcement change the one-way shear behavior of reinforced concrete slabs?. J. Compos. Constr. 12, 125–133 (2008).

    CAS 

    Google Scholar 

  • Razaqpur, A. G. & Spadea, S. Shear strength of FRP reinforced concrete members with stirrups. J. Compos. Constr. 19, 4014025 (2015).

    Google Scholar 

  • Marí, A., Bairán, J., Cladera, A., Oller, E. & Ribas, C. Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams. Struct. Infrastruct. Eng. 11, 1399–1419 (2015).

    Google Scholar 

  • Yaseen, Z. M. et al. Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Adv. Eng. Softw. 115, 112–125 (2018).

    Google Scholar 

  • Zhang, G. et al. Reinforced concrete deep beam shear strength capacity modelling using an integrative bio-inspired algorithm with an artificial intelligence model. Eng. Comput. https://doi.org/10.1007/s00366-020-01137-1 (2020).

    Article 

    Google Scholar 

  • Biswas, R. et al. Development of hybrid models using metaheuristic optimization techniques to predict the carbonation depth of fly ash concrete. Constr. Build. Mater. 346, 128483 (2022).

    CAS 

    Google Scholar 

  • Asteris, P. G., Armaghani, D. J., Hatzigeorgiou, G. D., Karayannis, C. G. & Pilakoutas, K. Predicting the shear strength of reinforced concrete beams using artificial neural networks. Comput. Concr. 24, 469–488 (2019).

    Google Scholar 

  • Armaghani, D. J. et al. Soft computing-based techniques for concrete beams shear strength. Proced. Struct. Integr. 17, 924–933 (2019).

    Google Scholar 

  • Basilio, S. A. & Goliatt, L. Gradient boosting hybridized with exponential natural evolution strategies for estimating the strength of geopolymer self-compacting concrete. Knowl. Based Eng. Sci. 3, 1–16 (2022).

    Google Scholar 

  • Zaker Esteghamati, M. & Flint, M. M. Developing data-driven surrogate models for holistic performance-based assessment of mid-rise RC frame buildings at early design. Eng. Struct. https://doi.org/10.1016/j.engstruct.2021.112971 (2021).

    Article 

    Google Scholar 

  • Wakjira, T. G., Al-Hamrani, A., Ebead, U. & Alnahhal, W. Shear capacity prediction of FRP-RC beams using single and ensenble ExPlainable Machine learning models. Compos. Struct. 287, 115381 (2022).

    CAS 

    Google Scholar 

  • Salman, B. & Kadhum, M. M. Predicting of load carrying capacity of reactive powder concrete and normal strength concrete column specimens using artificial neural network. Knowl. Based Eng. Sci. 3, 45–53 (2022).

    Google Scholar 

  • Jumaa, G. B. & Yousif, A. R. Predicting shear capacity of FRP-reinforced concrete beams without stirrups by artificial neural networks, gene expression programming, and regression analysis. Adv. Civ. Eng. 2018, 25 (2018).

    Google Scholar 

  • Alam, M. S. & Gazder, U. Shear strength prediction of FRP reinforced concrete members using generalized regression neural network. Neural Comput. Appl. https://doi.org/10.1007/s00521-019-04107-x (2020).

    Article 

    Google Scholar 

  • Chou, J. S., Pham, T. P. T., Nguyen, T. K., Pham, A. D. & Ngo, N. T. Shear strength prediction of reinforced concrete beams by baseline, ensemble, and hybrid machine learning models. Soft Comput. https://doi.org/10.1007/s00500-019-04103-2 (2020).

    Article 

    Google Scholar 

  • Abuodeh, O. R., Abdalla, J. A. & Hawileh, R. A. Prediction of shear strength and behavior of RC beams strengthened with externally bonded FRP sheets using machine learning techniques. Compos. Struct. 234, 111698 (2020).

    CAS 

    Google Scholar 

  • Alam, M. S., Sultana, N. & Hossain, S. M. Z. Bayesian optimization algorithm based support vector regression analysis for estimation of shear capacity of FRP reinforced concrete members. Appl. Soft Comput. 20, 107281 (2021).

    Google Scholar 

  • Nikoo, M., Aminnejad, B. & Lork, A. Predicting shear strength in FRP-reinforced concrete beams using bat algorithm-based artificial neural network. Adv. Mater. Sci. Eng. 20, 21 (2021).

    Google Scholar 

  • Ebid, A. M. & Deifalla, A. Prediction of shear strength of FRP reinforced beams with and without stirrups using (GP) technique. Ain Shams Eng. J. 20, 25 (2021).

    Google Scholar 

  • Alam, M., Sultana, N., Hossain, S. M. & Islam, M. S. Hybrid intelligence modeling for estimating shear strength of FRP reinforced concrete members. Neural Comput. Appl. 20, 1–11 (2022).

    Google Scholar 

  • Nguyen, T.-A. & Nguyen, T. X. T. Estimation of the shear strength of frp reinforced concrete beams without stirrups using machine learning algorithm. In CIGOS 2021, Emerging Technologies and Applications for Green Infrastructure 1825–1832 (Springer, 2022).

  • Zhang, J. et al. Machine-learning-assisted shear strength prediction of reinforced concrete beams with and without stirrups. Eng. Comput. 10, 1–15 (2020).

    Google Scholar 

  • Rahman, J., Ahmed, K. S., Khan, N. I., Islam, K. & Mangalathu, S. Data-driven shear strength prediction of steel fiber reinforced concrete beams using machine learning approach. Eng. Struct. 233, 111743 (2021).

    Google Scholar 

  • Feng, D.-C., Wang, W.-J., Mangalathu, S. & Taciroglu, E. Interpretable XGBoost-SHAP machine-learning model for shear strength prediction of squat RC walls. J. Struct. Eng. 147, 4021173 (2021).

    Google Scholar 

  • Mohammed, H. R. M. & Ismail, S. Proposition of new computer artificial intelligence models for shear strength prediction of reinforced concrete beams. Eng. Comput. https://doi.org/10.1007/s00366-021-01400-z (2021).

    Article 

    Google Scholar 

  • Khalaf, J. A. et al. Hybridized deep learning model for perfobond rib shear strength connector prediction. Complexity 20, 21 (2021).

    Google Scholar 

  • Nagasaka, T., Fukuyama, H. & Tanigaki, M. Shear performance of concrete beams reinforced with FRP stirrups. Spec. Publ. 138, 789–812 (1993).

    Google Scholar 

  • Zhao, W., Maruyama, K. & Suzuki, H. Shear behavior of concrete beams reinforced by FRP rods as longitudinal and shear reinforcement. in Rilem Proceedings 352 (Chapman & Hall, 1995).

  • Bentz, E. C., Massam, L. & Collins, M. P. Shear strength of large concrete members with FRP reinforcement. J. Compos. Constr. 14, 637–646 (2010).

    CAS 

    Google Scholar 

  • Niewels, J. Zum Tragverhalten von Betonbauteilen mit Faserverbundkunststoff-Bewehrung (Eigenverlag, 2008).

    Google Scholar 

  • Maruyama, K. Size effect in shear behavior of FRP reinforced concrete beams advanced composite materials in bridges and structures. CSCE 20, 227–234 (1996).

    Google Scholar 

  • Vijay, P. V, Kumar, S. V & GangaRao, H. V. S. Shear and ductility behavior of concrete beams reinforced with GFRP rebars. In Proceedings of the 2nd International Conference on Advanced Composite Materials in Bridges and Structures, ACMBS-II, Montreal 1996 (1996).

  • Maruyama, K. & Zhao, W. J. Flexural and shear behaviour of concrete beams reinforced with FRP rods. Corrosion Corrosion Protecti. Steel Concrete 120, 330–1339 (1994).

    Google Scholar 

  • Alsayed, S. H., Al-Salloum, Y. A. & Almusallam, T. H. Shear design for beams reinforced by GFRP bars. In Non-metallic (FRP) Reinforcement for Concrete Structures: Proceedings of the Third International Symposium (FRPRCS-3) 2, 285–292 (1997).

  • Duranovic, N., Pilakoutas, K. & Waldron, P. Tests on concrete beams reinforced with glass fibre reinforced plastic bars. Non-metallic Reinf. Concr. Struct. 2, 479–486 (1997).

    Google Scholar 

  • Alkhrdaji, T., Wideman, M., Belarbi, A. & Nanni, A. Shear strength of GFRP RC beams and slabs. In Proceedings of the International Conference, Composites in Construction-CCC 409–414 (2001).

  • Alsayed, S. H. Flexural behaviour of concrete beams reinforced with GFRP bars. Cem. Concr. Compos. 20, 1–11 (1998).

    CAS 

    Google Scholar 

  • Matta, F., Nanni, A., Hernandez, T. M. & Benmokrane, B. Scaling of strength of FRP reinforced concrete beams without shear reinforcement. In Fourth International Conference on FRP Composites in Civil Engineering (CICE2008) Zurich, Switzerland 1–6 (2008).

  • Ascione, L., Mancusi, G. & Spadea, S. Flexural behaviour of concrete beams reinforced with GFRP bars. Strain 46, 460–469 (2010).

    Google Scholar 

  • Okamoto, T., Nagasaka, T. & Tanigaki, M. Shear capacity of concrete beams using FRP reinforcement. J. Struct. Constr. Eng 455, 127–136 (1994).

    Google Scholar 

  • Guang-Bin, H. & Chee-Kheong, S. Extreme learning machine: RBF network case. In ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004. 2, 1029–1036 (2004).

  • Huang, G.-B., Zhu, Q.-Y. & Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 70, 489–501 (2006).

    Google Scholar 

  • Huang, G. B., Chen, L. & Siew, C. K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17, 879–892 (2006).

    Google Scholar 

  • Hai, T. et al. Global solar radiation estimation and climatic variability analysis using extreme learning machine based predictive model. IEEE Access 8, 12026–12042 (2020).

    Google Scholar 

  • Adnan, R. M. et al. Improving streamflow prediction using a new hybrid ELM model combined with hybrid particle swarm optimization and grey wolf optimization. Knowl. Based Syst. 20, 107379 (2021).

    Google Scholar 

  • Huang, G.-B., Zhou, H., Ding, X. & Zhang, R. Extreme learning machine for regression and multiclass classification. IEEE Trans Syst. Man, Cybern. Part B 42, 513–529 (2011).

    Google Scholar 

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH 

    Google Scholar 

  • Ho, T. K. Random decision forests. In Proceedings of 3rd International Conference on Document Analysis and Recognition 1, 278–282 (IEEE, 1995).

  • Quinlan, J. R. Learning with continuous classes. Mach. Learn. 92, 343–348 (1992).

    Google Scholar 

  • Ajmera, T. K. & Goyal, M. K. Development of stage–discharge rating curve using model tree and neural networks: An application to Peachtree Creek in Atlanta. Expert Syst. Appl. 39, 5702–5710 (2012).

    Google Scholar 

  • Goyal, M. K., Ojha, C. S. P., Singh, R. D., Swamee, P. K. & Nema, R. K. Application of ANN, fuzzy logic and decision tree algorithms for the development of reservoir operating rules. Water Resour. Manage. 27, 911–925 (2013).

    Google Scholar 

  • Witten, I. H. & Frank, E. Data mining: Practical machine learning tools and techniques with Java implementations. Acm Sigmod Rec. 31, 76–77 (2002).

    Google Scholar 

  • Ma, Y., Qian, Z., Shou, G. & Hu, Y. Study on preliminary performance of algorithms for network traffic identification. In 2008 International Conference on Computer Science and Software Engineering 1, 629–633 (IEEE, 2008).

  • Walpole, R. E., Myers, R. H., Myers, S. L. & Ye, K. Probability and Statistics for Engineers and Scientists vol 5 (Macmillan, 1993).

    MATH 

    Google Scholar 

  • Gupta, H. V., Kling, H., Yilmaz, K. K. & Martinez, G. F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 377, 80–91 (2009).

    ADS 

    Google Scholar 

  • Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 106, 7183–7192 (2001).

    ADS 

    Google Scholar 

  • Nehdi, M., El Chabib, H. & Saïd, A. A. Proposed shear design equations for FRP-reinforced concrete beams based on genetic algorithms approach. J. Mater. Civ. Eng. https://doi.org/10.1061/(asce)0899-1561(2007)19:12(1033) (2007).

    Article 

    Google Scholar 

  • Oller, E., Marí, A., Bairán, J. M. & Cladera, A. Shear design of reinforced concrete beams with FRP longitudinal and transverse reinforcement. Compos. Part B Eng. 74, 104–122 (2015).

    Google Scholar 

  • Chou, J.-S., Nguyen, T.-K., Pham, A.-D. & Ngo, N.-T. Shear strength prediction of reinforced concrete beams by baseline, ensemble, and hybrid machine learning models. Soft Comput. 24, 3393–3411 (2020).

    Google Scholar 

  • Source: https://news.google.com/__i/rss/rd/articles/CBMiMmh0dHBzOi8vd3d3Lm5hdHVyZS5jb20vYXJ0aWNsZXMvczQxNTk4LTAyMy0yNzYxMy000gEA?oc=5

    npressfetimg-1131.png
    Machine learning

    Organic reaction mechanism classification using machine learning – Nature.com

    Simonetti, M., Cannas, D. M., Just-Baringo, X., Vitorica-Yrezabal, I. J. & Larrosa, I. Cyclometallated ruthenium catalyst enables late-stage directed arylation of pharmaceuticals. Nat. Chem. 10, 724–731 (2018).

    Article 
    CAS 

    Google Scholar 
    …….

    Read More
    npressfetimg-1058.png
    Machine learning

    Generative AI: how will the new era of machine learning affect you? – Financial Times

    Copyright The Financial Times Limited 2023. All rights reserved.

    Follow the topics in this article

    Markets data delayed by at least 15 minutes. © THE FINANCIAL TIMES LTD 2023. FT and ‘Financial Times’ are trademarks of The Financial Times Ltd.The Financial Times and its journalism are subject to a self-regulation regime under the FT Editoria…….

    Read More
    npressfetimg-986.png
    Machine learning

    Generative AI: how will the new era of machine learning affect you? – Financial Times

    Copyright The Financial Times Limited 2023. All rights reserved.

    Follow the topics in this article

    Markets data delayed by at least 15 minutes. © THE FINANCIAL TIMES LTD 2023. FT and ‘Financial Times’ are trademarks of The Financial Times Ltd.The Financial Times and its journalism are subject to a self-regulation regime under the FT Editoria…….

    Read More
    Nommu