Organic reaction mechanism classification using machine learning – Nature.com

npressfetimg-1131.png
  • Simonetti, M., Cannas, D. M., Just-Baringo, X., Vitorica-Yrezabal, I. J. & Larrosa, I. Cyclometallated ruthenium catalyst enables late-stage directed arylation of pharmaceuticals. Nat. Chem. 10, 724–731 (2018).

    Article 
    CAS 

    Google Scholar 

  • Salazar, C. A. et al. Tailored quinones support high-turnover Pd catalysts for oxidative C-H arylation with O2. Science 370, 1454–1460 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • DiRocco, D. A. et al. A multifunctional catalyst that stereoselectively assembles prodrugs. Science 356, 426–430 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, T. et al. Efficient, chemoenzymatic process for manufacture of the Boceprevir bicyclic [3.1.0]proline intermediate based on amine oxidase-catalyzed desymmetrization. J. Am. Chem. Soc. 134, 6467–6472 (2012).

    Article 
    CAS 

    Google Scholar 

  • Nielsen, L. P., Stevenson, C. P., Blackmond, D. G. & Jacobsen, E. N. Mechanistic investigation leads to a synthetic improvement in the hydrolytic kinetic resolution of terminal epoxides. J. Am. Chem. Soc. 126, 1360–1362 (2004).

    Article 
    CAS 

    Google Scholar 

  • van Dijk, L. et al. Mechanistic investigation of Rh(I)-catalysed asymmetric Suzuki–Miyaura coupling with racemic allyl halides. Nat. Catal. 4, 284–292 (2021).

    Article 

    Google Scholar 

  • Camasso, N. M. & Sanford, M. S. Design, synthesis, and carbon-heteroatom coupling reactions of organometallic nickel(IV) complexes. Science 347, 1218–1220 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Milo, A., Neel, A. J., Toste, F. D. & Sigman, M. S. A data-intensive approach to mechanistic elucidation applied to chiral anion catalysis. Science 347, 737–743 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Butcher, T. W. et al. Desymmetrization of difluoromethylene groups by C-F bond activation. Nature 583, 548–553 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cho, E. J. et al. The palladium-catalyzed trifluoromethylation of aryl chlorides. Science 328, 1679–1681 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hutchinson, G., Alamillo-Ferrer, C. & Bures, J. Mechanistically guided design of an efficient and enantioselective aminocatalytic alpha-chlorination of aldehydes. J. Am. Chem. Soc. 143, 6805–6809 (2021).

    Article 
    CAS 

    Google Scholar 

  • Schreyer, L. et al. Confined acids catalyze asymmetric single aldolizations of acetaldehyde enolates. Science 362, 216–219 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Peters, B. K. et al. Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry. Science 363, 838–845 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Michaelis, L. & Menten, M. L. Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333–369 (1913).

    CAS 

    Google Scholar 

  • Blackmond, D. G. Reaction progress kinetic analysis: a powerful methodology for mechanistic studies of complex catalytic reactions. Angew. Chem. Int. Ed. Engl. 44, 4302–4320 (2005).

    Article 
    CAS 

    Google Scholar 

  • Mathew, J. S. et al. Investigations of Pd-catalyzed ArX coupling reactions informed by reaction progress kinetic analysis. J. Org. Chem. 71, 4711–4722 (2006).

    Article 
    CAS 

    Google Scholar 

  • Bures, J. A simple graphical method to determine the order in catalyst. Angew. Chem. Int. Ed. Engl. 55, 2028–2031 (2016).

    Article 
    CAS 

    Google Scholar 

  • Burés, J. Variable time normalization analysis: general graphical elucidation of reaction orders from concentration profiles. Angew. Chem. Int. Ed. Engl. 55, 16084–16087 (2016).

    Article 

    Google Scholar 

  • Shi, Y., Prieto, P. L., Zepel, T., Grunert, S. & Hein, J. E. Automated experimentation powers data science in chemistry. Acc. Chem. Res. 54, 546–555 (2021).

    Article 
    CAS 

    Google Scholar 

  • Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bedard, A. C. et al. Reconfigurable system for automated optimization of diverse chemical reactions. Science 361, 1220–1225 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363, eaav2211 (2019).

    Article 
    CAS 

    Google Scholar 

  • Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Martinez-Carrion, A. et al. Kinetic treatments for catalyst activation and deactivation processes based on variable time normalization analysis. Angew. Chem. Int. Ed. Engl. 58, 10189–10193 (2019).

    Article 
    CAS 

    Google Scholar 

  • Bernacki, J. P. & Murphy, R. M. Model discrimination and mechanistic interpretation of kinetic data in protein aggregation studies. Biophys. J. 96, 2871–2887 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pfluger, P. M. & Glorius, F. Molecular machine learning: the future of synthetic chemistry? Angew. Chem. Int. Ed. Engl. 59, 18860–18865 (2020).

    Article 

    Google Scholar 

  • Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Raissi, M., Yazdani, A. & Karniadakis, G. E. Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367, 1026–1030 (2020).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Hermann, J., Schatzle, Z. & Noe, F. Deep-neural-network solution of the electronic Schrodinger equation. Nat. Chem. 12, 891–897 (2020).

    Article 
    CAS 

    Google Scholar 

  • Shields, B. J. et al. Bayesian reaction optimization as a tool for chemical synthesis. Nature 590, 89–96 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hueffel, J. A. et al. Accelerated dinuclear palladium catalyst identification through unsupervised machine learning. Science 374, 1134–1140 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Haitao, X., Junjie, W. & Lu, L. In Proc. 1st International Conference on E-Business Intelligence 303–309 (Atlantis Press, 2010).

  • Batista, G. E. A. P. A. et al. In Advances in Intelligent Data Analysis VI (eds Fazel Famili, A. et al.) 24–35 (Springer, 2005).

  • Wei, J.-M., Yuan, X.-J., Hu, Q.-H. & Wang, S.-Q. A novel measure for evaluating classifiers. Expert Syst. Appl. 37, 3799–3809 (2010).

    Article 

    Google Scholar 

  • Alberton, A. L., Schwaab, M., Schmal, M. & Pinto, J. C. Experimental errors in kinetic tests and its influence on the precision of estimated parameters. Part I—analysis of first-order reactions. Chem. Eng. J. 155, 816–823 (2009).

    Article 
    CAS 

    Google Scholar 

  • Pacheco, H., Thiengo, F., Schmal, M. & Pinto, J. C. A family of kinetic distributions for interpretation of experimental fluctuations in kinetic problems. Chem. Eng. J. 332, 303–311 (2018).

    Article 
    CAS 

    Google Scholar 

  • Storer, A. C., Darlison, M. G. & Cornish-Bowden, A. The nature of experimental error in enzyme kinetic measurments. Biochem. J 151, 361–367 (1975).

    Article 
    CAS 

    Google Scholar 

  • Valkó, É. & Turányi, T. In Lindner, E., Micheletti, A. & Nunes, C. (eds) Mathematical Modelling in Real Life Problems. Mathematics in Industry https://doi.org/10.1007/978-3-030-50388-8_3 (2020).

  • Thiel, V., Wannowius, K. J., Wolff, C., Thiele, C. M. & Plenio, H. Ring-closing metathesis reactions: interpretation of conversion-time data. Chem. Eur. J. 19, 16403–16414 (2013).

    Article 
    CAS 

    Google Scholar 

  • Joannou, M. V., Hoyt, J. M. & Chirik, P. J. Investigations into the mechanism of inter- and intramolecular iron-catalyzed [2 + 2] cycloaddition of alkenes. J. Am. Chem. Soc. 142, 5314–5330 (2020).

    Article 
    CAS 

    Google Scholar 

  • Knapp, S. M. M. et al. Mechanistic studies of alkene isomerization catalyzed by CCC-pincer complexes of iridium. Organometallics 33, 473–484 (2014).

    Article 
    CAS 

    Google Scholar 

  • Stroek, W., Keilwerth, M., Pividori, D. M., Meyer, K. & Albrecht, M. An iron-mesoionic carbene complex for catalytic intramolecular C-H amination utilizing organic azides. J. Am. Chem. Soc. 143, 20157–20165 (2021).

    Article 
    CAS 

    Google Scholar 

  • Lehnherr, D. et al. Discovery of a photoinduced dark catalytic cycle using in situ LED-NMR spectroscopy. J. Am. Chem. Soc. 140, 13843–13853 (2018).

    Article 
    CAS 

    Google Scholar 

  • Ludwig, J. R., Zimmerman, P. M., Gianino, J. B. & Schindler, C. S. Iron(III)-catalysed carbonyl-olefin metathesis. Nature 533, 374–379 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Albright, H. et al. Catalytic carbonyl-olefin metathesis of aliphatic ketones: iron(III) homo-dimers as Lewis acidic superelectrophiles. J. Am. Chem. Soc. 141, 1690–1700 (2019).

    Article 
    CAS 

    Google Scholar 

  • Janse van Rensburg, W., Steynberg, P. J., Meyer, W. H., Kirk, M. M. & Forman, G. S. DFT prediction and experimental observation of substrate-induced catalyst decomposition in ruthenium-catalyzed olefin metathesis. J. Am. Chem. Soc. 126, 14332–14333 (2004).

    Article 

    Google Scholar 

  • van der Eide, E. F. & Piers, W. E. Mechanistic insights into the ruthenium-catalysed diene ring-closing metathesis reaction. Nat. Chem. 2, 571–576 (2010).

    Article 

    Google Scholar 

  • Source: https://news.google.com/__i/rss/rd/articles/CBMiMmh0dHBzOi8vd3d3Lm5hdHVyZS5jb20vYXJ0aWNsZXMvczQxNTg2LTAyMi0wNTYzOS000gEA?oc=5

    npressfetimg-1204.png
    Machine learning

    Machine learning models development for shear strength prediction of reinforced concrete beam: a comparative study … – Nature.com

    Siddika, A., Al Mamun, M. A., Alyousef, R. & Amran, Y. H. M. Strengthening of reinforced concrete beams by using fiber-reinforced polymer composites: A review. J. Build. Eng. 25, 100798 (2019).

    Google Scholar 

    <p class="c-article-references__text" …….

    Read More
    npressfetimg-1058.png
    Machine learning

    Generative AI: how will the new era of machine learning affect you? – Financial Times

    Copyright The Financial Times Limited 2023. All rights reserved.

    Follow the topics in this article

    Markets data delayed by at least 15 minutes. © THE FINANCIAL TIMES LTD 2023. FT and ‘Financial Times’ are trademarks of The Financial Times Ltd.The Financial Times and its journalism are subject to a self-regulation regime under the FT Editoria…….

    Read More
    npressfetimg-986.png
    Machine learning

    Generative AI: how will the new era of machine learning affect you? – Financial Times

    Copyright The Financial Times Limited 2023. All rights reserved.

    Follow the topics in this article

    Markets data delayed by at least 15 minutes. © THE FINANCIAL TIMES LTD 2023. FT and ‘Financial Times’ are trademarks of The Financial Times Ltd.The Financial Times and its journalism are subject to a self-regulation regime under the FT Editoria…….

    Read More
    Nommu